STUDY MODULE DESCRIPTION FORM					
			Code 010101231010105181		
Field of study	·	Profile of study (general academic, practical)	Year /Semester		
Environmental Engineering First-cycle Studies			2/3		
Elective path/specialty	-	Subject offered in: Polish	Course (compulsory, elective) obligatory		
Cycle of study:		Form of study (full-time,part-time)			
First-cycle studies		full-time			
No. of hours			No. of credits		
Lecture: 30 C	classes: 15 Laboratory: -	Project/seminars: 1	5 5		
Status of the course in th	e study program (Basic, major, other)	(university-wide, from another fie	eld)		
	(brak)	(brak)		
Education areas and field	ds of science and art		ECTS distribution (number and %)		
Responsible for subject / lecturer: dr inż. Przemysław Muszyński					
email: przemyslaw.muszynski@put.poznan.pl tel. (61) 6653662 Wydział Budownictwa i Inżynierii Środowiska ul. Piotrowo 5 60-965 Poznań					
Prerequisites in terms of knowledge, skills and social competencies:					
1 Knowledg	Basic knowledge of fluid mechan	Basic knowledge of fluid mechanics.			
2 Skills	Applications of fundamental righ	Applications of fundamental rights, depending on the mechanics of liquids and gases.			
3 Social competer	cies	Awareness of the need to constantly update and supplement knowledge and skills.			
Assumptions and objectives of the course: The acquisition by the students basic knowledge, skills in designing plumbing and fire.					
Study outcomes and reference to the educational results for a field of study					
Knowledge:					

Faculty of Civil and Environmental Engineering

- 1. The student knows the basic concepts of water supply systems. (lectures) [K_W05, K_W07]
- 2. The student has knowledge of the operation and construction of water supply systems. (lectures) [K_W05, K_W07]
- 3. The student knows the possible solutions to water supply systems. (lectures) [K_W05, K_W07]
- 4. The student has the knowledge to determine the required pressure for water supply systems. (lectures, classes) $[K_W05, K_W07]$
- 5. The student has knowledge of hydraulic calculations install hot and cold water and circulation pipe. (lectures, classes) [K_W05, K_W07]
- 6. The student has knowledge of the construction of the water supply connection and selection of water meters. (lectures, classes) [K_W05, K_W07]
- 7. The student knows the principles of operation of devices booster. (lectures) [K_W01, K_W05, K_W07]
- 8. The student knows the rules of dimensioning hot and cold water. (lectures) [K_W05, K_W07]
- 9. The student has knowledge of the equipment for the preparation of hot water. (lectures) [K_W01, K_W05, K_W07]
- 10. The student has knowledge of the operation of the system of circulation gravity and forced. (lectures) $[K_W01, K_W05, K_W07]$
- 11. The student has knowledge of the used materials (pipes and fittings) in sanitary systems. (lectures) [K_W01, K_W05, K_W07]
- 12. The student has knowledge of solutions and technologies used in sanitary systems. (lectures) [K_W05, K_W07]
- 13. The student has the knowledge for determining the demand for water. (lectures) [K_W07]
- 14. The student has the knowledge to carry out the selection of system components water and sewage. (lectures, classes) [K_W05, K_W07]
- 15. The student has the see of the functioning and construction of fire protection systems. (lectures) [K_W05, K_W07]
- 16. The student has the see of the functioning and construction of sewage systems. (lectures) [K_W05, K_W07]
- 17. The student has knowledge of hydraulic calculations sewage systems. (lectures, classes) [K_W01, K_W07]
- 18. The student knows the rules of dimensioning sewage systems. (lectures, classes) [K_W01, K_W07]
- 19. The student understands the functioning of the local wastewater treatment facilities. (lectures) [K_W05, K_W07]

Skills:

- 1. The student is able to perform hydraulic calculations hot and cold water. (classes, projects) [K_U14, K_U15, K_U16]
- 2. The student can choose the components of hot and cold water. (classes, projects) [K_U14, K_U15, K_U16]
- 3. The student is able to perform calculations sewage system. (classes, projects) [K_U14, K_U15, K_U16]
- 4. The student can choose the components of the sewage system. (classes, projects) [K_U14, K_U15, K_U16]
- 5. The student is able to design a water supply connection and select water meter. (classes, projects) $[K_U09, K_U14, K_U16]$
- 6. The student is able to design a sewer connection. (lectures) [K_U09, K_U14, K_U16]
- 7. The student is able to design the fire protection system. (lectures) [K_U09, K_U14, K_U16]
- 8. The student is able to design the installation of sewage from a local wastewater treatment. (lectures) $[K_U09, K_U14, K_U16]$

Social competencies:

- 1. The student understands the need for teamwork in solving theoretical and practical problems. (classes, projects) [K_K03]
- 2. The student sees the need for systematic deepening and extending their competence. (classes, projects) [K_K01]
- 3. The student is aware of the social role of technical university graduate. (classes, projects) [K_K07]

Assessment methods of study outcomes

Lectures (efekt: W01, W05, W07):

- a written final exam test students' knowledge.
- pass 50% points.

Tutorials (efekt: W01, W05, W07, U09, U14, U15, U16):

- the accuracy of self-assessment tasks solutions,
- continuous assessment of the students (rewarding students activity),
- final test in the last week of the semester.
- pass 50% points.

Projects (efekt: U09, U14, U15, U16):

- assessment of the correctness of the project,
- the ocean of knowledge of the scope of the project,
- continuous assessment of the students (rewarding students activity).
- pass 50% points.

Course description

- 1. Basic concepts of water supply systems.
- 2. Classification supply systems (water systems, cold and hot, circulation).
- 3. Standards water requirement, standards related to the design of water supply systems.
- 4. Construction of water supply systems (components of the system).
- 5. Solutions of systems of water supply systems.
- 6. The definition and calculation of the required pressure for supply system.
- 7. Hydraulic calculations of water supply systems.
- 8. Installation circulation gravitational and forced; design principles circulation.
- 9. Classification of devices for hot water.
- 10. Water supply connection and home and residential water metres.
- 11. Design, operation and use of equipment booster.
- 12. Operation of pumping systems connected in series and in parallel.
- 13. Design of fire protection systems.
- 14. Basic concepts of sewage systems.
- 15. Distribution of sewage systems (from municipal wastewater-economic and rainy; systems by the standard).
- 16. Standards of designing sewage systems.
- 17. Construction of sewage systems (components of the system).
- 18. Calculations sewage systems.
- 19. Local sewerage on greenfield sites.
- 20. Materials, solutions and technologies in sanitary systems.
- 21. Methods for selection of system components, cold water, hot water and sewage systems.

Basic bibliography:

- 1. Sosnowski S., Tabernacki J.: Instalacje wodociągowe i kanalizacyjne w budynkach
- 2. Tabernacki J., Sosnowski S., Heidrich Z.: Projektowanie instalacji wodociągowych i kanalizacyjnych
- 3. Żuchowicki W.: Instalacje wodociągowe
- 4. Żuchowicki W.: Odprowadzenie ścieków

Additional bibliography:

- 1. Chudzicki J., Sosnowski S.: Instalacje wodociągowe i kanalizacyjne. Materiały pomocnicze do ćwiczeń
- 2. Chudzicki J., Sosnowski S.: Instalacje kanalizacyjne projektowanie, wykonanie, eksploatacja
- 3. Chudzicki J., Sosnowski S.: Instalacje wodociągowe projektowanie, wykonanie, eksploatacja
- 4. Żuchowicki W.: Zaopatrzenie w wodę

Result of average student's workload

Activity	Time (working hours)
1. Participation in lectures (contact hours)	30
2. Participation in the project activities (contact, practical hours)	15
3. Participation in tutorials (contact hours)	15
4. Participation in consultations related to the implementation of the project and tutorials (contact,	10
practical hours)	15
5. Implementation of project activities (practical hours, independent work)	15
6. Preparation for the final test of tutorials (independent work)	20
7. Preparation for the exam and the presence of the exam (independent work)	5
8. The absence of the exam, completion of the exercise and defense of the project (contact hours)	

Student's workload

Source of workload	hours	ECTS
Total workload	125	5
Contact hours	75	3
Practical activities	40	2